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ABSTRACT
Causal learning from observational data has garnered attention
as controlled experiments can be costly. To enhance identifiabil-
ity, incorporating intervention data has become a mainstream ap-
proach. However, these methods have yet to be explored in the
context of time series data, despite their success in static data. To
address this research gap, this paper presents a novel contribution.
Firstly, a temporal interventional dataset with causal labels is in-
troduced, derived from a data center IT room of a cloud service
company. Secondly, this paper introduces TECDI, a novel approach
for temporal causal discovery. TECDI leverages the smooth, alge-
braic characterization of acyclicity in causal graphs to efficiently
uncover causal relationships. Experimental results on simulated and
proposed real-world datasets validate the effectiveness of TECDI
in accurately uncovering temporal causal relationships. The in-
troduction of the temporal interventional dataset and the supe-
rior performance of TECDI contribute to advancing research in
temporal causal discovery. Our datasets and codes have released
at https://github.com/lpwpower/TECDI.

CCS CONCEPTS
• Computing methodologies→ Causal reasoning and diagnostics;
Temporal reasoning.
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1 INTRODUCTION
The exploration of causal knowledge has stood as a fundamental
undertaking in scientific research. Causal knowledge aids in com-
prehending intricate systems, including cloud service systems, and
guides further optimization decisions. Nonetheless, even for very
powerful large-scale models, it is challenging to handle causal dis-
covery and causal inference tasks [9, 21]. Conducting randomized
controlled trials, which serve as the gold standard for causal discov-
ery, often proves arduous due to factors such as experimental costs
and ethical constraints. As a result, causal discovery algorithms
relying on observational data have garnered substantial attention in
recent years. However, from the observational data, the true causal
graph is only identifiable up to a Markov equivalence class under
the faithfulness assumption [6]. Encouragingly, identifiability can
be enhanced by obsorbing additional information from interven-
tional data [4, 19], which have been applied in the causal discovery
from static data [3, 8].

Temporal data is prevalent across diverse fields, such as indus-
try [10], finance [7], meteorology [11], and neuroscience [2], which
need causal knowledge. Unlike static data, temporal data provides
a dynamic perspective, enabling us to capture the evolution of
causal relationships. Therefore, causal discovery within the tem-
poral domain extends beyond the mere identification of causal
links between variables (such as 𝑋 causes 𝑌 ), incorporating the
discovering causal lags (such as 𝑋𝑡−𝑖 causes 𝑌𝑡 with lag 𝑖). The
approaches to causal discovery from temporal data roughly fall
into three categories, namely, Granger causality, constraint-based
methods and score-based methods. Besides the sole work [5], there
is currently no method available to utilize interventional data for
temporal causal discovery. The main reason for this blank may be
that real intervention time series data are difficult to obtain.

Inspired by recent advancements in anomaly detection on time
series [20], this paper introduces a novel approach for constructing
a temporal interventional dataset based on monitoring data from a
data center operated by Alibaba. In our dataset, we consider a source
anomaly, where no other anomalies were detected in the previous
period, as the intervention. Building upon this dataset, we design a
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method called temporal causal discovery based on interventional
Data (TECDI). TECDI leverages the smooth, algebraic characteri-
zation of acyclicity of causal graphs [12, 22] to achieve differential
causal structure learning. Powered by the theoretically-grounded
method based on static interventional data [4], our method is able
to capture both contemporaneous and time-lagged causal relation-
ships simultaneously with identifiability guarantee. To validate
the effectiveness of TECDI, we conducted experiments using both
simulated and proposed real-world datasets. The results clearly
demonstrate the superiority of our method in discovering temporal
causal relationships accurately.

This paper makes two significant contributions. Firstly, to the
best of our knowledge, TECDI is the first attempt to employ in-
terventional data for real-world temporal causal discovery. This
novel approach opens up new avenues for research in this field
and expands the possibilities for understanding causal relationships
in practical complex system. Secondly, we construct the first-ever
real-world temporal interventional dataset, which we believe will
greatly facilitate future investigations and advancements in this
area of research.

2 RELATEDWORK
The theoretical evidence confirms that the availability of interven-
tional data can greatly enhance the identification of the underlying
causal structure [4, 18]. However, the research progress in this
direction has been limited due to the substantial challenges asso-
ciated with designing intervention experiments and obtaining the
necessary data. The study conducted in [8] addressed the challenge
of learning causal graphs with latent variables from a combination
of observational and interventional distributions, where the inter-
ventional targets are unknown. The proposed approach utilized
a Ψ-Markov property to tackle this problem. In a different con-
text, the work presented in [1] introduced a randomized algorithm
that recovers the complete causal graph while minimizing the in-
tervention cost. This algorithm relied on a novel characterization
based on 𝑝-colliders. Additionally, DCDI [3] is a versatile method
for causal discovery that operates under continuous constraints.
It can effectively leverage different types of interventional data
and incorporate expressive neural architectures like normalizing
flows. These works, however, do not address the problem of tem-
poral causal discovery using interventional data. The only study
available on temporal data, as presented in [5], does not include an
evaluation on real-world datasets.

3 METHODS
3.1 Definitions
3.1.1 Dynamic causal graphic models. We extend the formulation
of causal graphic models to temporal data and form a dynamic
causal graphic model, defined by a distribution 𝑃𝑌 over the vector
𝑌 = (𝑌0, 𝑌1, . . . , 𝑌𝑝 ) and a DAG G = (𝑉 , 𝐸). 𝑌0 = (𝑋0,1, . . . , 𝑋0,𝑑 ),
where 𝑑 is the number of different contemporaneous variables, and
𝑌1, . . . , 𝑌𝑝 are time-lagged versions of𝑌0, i.e.𝑌𝑘 = (𝑋𝑘,1, . . . , 𝑋𝑘,𝑑 ), 𝑘 ∈
{1, . . . , 𝑝}. Therefore, 𝑌 = (𝑋0,1, . . . , 𝑋0,𝑑 , . . . , 𝑋𝑝,1, . . . , 𝑋𝑝,𝑑 ), ab-
breviated to 𝑌 = (𝑋1, . . . , 𝑋 (𝑝+1)𝑑 ). Besides, each node 𝑖 ∈ 𝑉 =

{1, . . . , (𝑝 + 1)𝑑} is related with a variable 𝑋𝑖 , 𝑖 ∈ {1, . . . , (𝑝 + 1)𝑑},
and each edge (𝑖, 𝑗) ∈ 𝐸 represents a direct causal relation from

variable 𝑋𝑖 to 𝑋 𝑗 . Under the Markov assumption of the distribution
𝑃𝑌 and graph G, the joint distribution can be factorized as

𝑝 (𝑥1, . . . , 𝑥 (𝑝+1)𝑑 ) =
(𝑝+1)𝑑∏
𝑗=1

𝑝 𝑗 (𝑥 𝑗 |𝑥𝜋G
𝑗

), (1)

where 𝜋G
𝑗
is the set of parents of the node 𝑗 in the graph G, and

𝑥
𝜋
G
𝑗

denotes the entries of the vector 𝑥 with indices in 𝜋
G
𝑗
. We also

assume causal sufficiency, which means there is no hidden common
cause that is causing more than one variable in 𝑌 [13].

3.1.2 Intervention. An intervention on a variable 𝑥 𝑗 is correspond-
ing to replacing its conditional density 𝑝 𝑗 (𝑥 𝑗 |𝑥𝜋G

𝑗

) by a new one.

Apart from that, we define the interventional target, a set 𝐼 ⊆ 𝑉

consisting of the variables been intervened simultaneously, and
the intervention family I := (𝐼1, . . . , 𝐼𝑄 ), where Q is the number of
interventions. To be specific, the observational setting, where no
variables were intervened, is always known and denoted by 𝐼1 := ∅.
The 𝑞th interventional joint density can be represented as

𝑝 (𝑞) (𝑥1, . . . , 𝑥 (𝑝+1)𝑑 ) :=
∏
𝑗∉𝐼𝑞

𝑝
(1)
𝑗

(𝑥 𝑗 |𝑥𝜋G
𝑗

)
∏
𝑗∈𝐼𝑞

𝑝
(𝑞)
𝑗

(𝑥 𝑗 |𝑥𝜋G
𝑗

). (2)

Note that, in temporal domain, only time-lagged variables𝑋𝑘,𝑗 , 𝑘 ∈
{1, . . . , 𝑝} and other variables𝑋𝑘,𝑖 , 𝑘 ∈ {0, . . . , 𝑝}, 𝑖 ∈ {1, . . . , 𝑑}\{ 𝑗}
can affect a variable 𝑋0, 𝑗 , so only the contemporaneous variables
𝑋0,1, . . . , 𝑋0,𝑑 can be intervened and appear in interventional tar-
gets. Meanwhile, we mainly consider imperfect (or soft, parametric)
interventions, and the setting of perfect interventions (or hard,
structural) [8] is a special case that can be easily extended.

3.2 The score for imperfect interventions
3.2.1 Model conditional densities. To begin with, we use neural
networks to model conditional densities. Firstly, we encode the
DAG G with a binary adjacency matrix𝑀G ∈ {0, 1} (𝑝+1)𝑑×(𝑝+1)𝑑

which acts as a mask on the neural network inputs. Similarly, we
encode the interventional family I with a binary matrix 𝑅I ∈
{0, 1}𝑄×(𝑝+1)𝑑 , where 𝑅I

𝑞𝑗
= 1 means that𝑋 𝑗 is a target in 𝐼𝑞 . Then,

following equation (2), we further model the joint density of the
𝑞th intervention by

𝑓 (𝑞)
(
𝑦;𝑀G, 𝑅I , 𝜙

)
:=

(𝑝+1)𝑑∏
𝑗=1

𝑓

(
𝑥 𝑗 ; NN

(
𝑀

G
𝑗
⊙ 𝑥 ;𝜙 (1)

𝑗

))1−𝑅I
𝑞𝑗

𝑓

(
𝑥 𝑗 ; NN

(
𝑀

G
𝑗
⊙ 𝑥 ;𝜙 (𝑞)

𝑗

))𝑅I
𝑞𝑗

,

(3)
where 𝜙 := {𝜙 (1) , . . . , 𝜙 (𝑄 ) }, the NN’s are neural networks param-
eterized by 𝜙

(1)
𝑗

or 𝜙 (𝑞)
𝑗

, the operator ⊙ denotes the Hadamard

product (element-wise) and 𝑀
G
𝑗

denotes the 𝑗th column of 𝑀G ,
which enables selecting the parents of node 𝑗 in the graph G.

3.2.2 Maximize the score. Finally, we form the regularized maxi-
mum log-likelihood score:

SI∗ (G) := sup
𝜙

𝑄∑︁
𝑞=1
E𝑌∼𝑝 (𝑞) log 𝑓 (𝑞)

(
𝑌,𝑀G, 𝑅I∗

, 𝜙

)
− 𝜆 |G|, (4)
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where the ground truth interventional family I∗ := (𝐼∗1 , . . . , 𝐼
∗
𝑄
)

is known and 𝑝 (𝑞) stands for the 𝑞th ground truth interventional
distribution. By maximizing it, we can get an estimated DAG Ĝ that
is I∗-Markov equivalent to the true DAG G∗ [3]. Then, we take
𝑀G as a randommatrix, where𝑀G

𝑖 𝑗
∼ 𝐵(1, 𝜎 (𝛼𝑖 𝑗 )), 𝜎 is the sigmoid

function and 𝛼𝑖 𝑗 is a scalar parameter. We group these 𝛼𝑖 𝑗 s into
a matrix Λ ∈ R(𝑝+1)𝑑×(𝑝+1)𝑑 . After that, we rely on augmented
Lagrangian procedure [22] to maximize the following score:

ŜI∗ (Λ) := sup
𝜙

E
𝑀∼𝜎 (Λ)


𝑄∑︁
𝑞=1

E
𝑌∼𝑝 (𝑞)

log 𝑓 (𝑞)
(
𝑌 ;𝑀,𝑅I∗

, 𝜙

)
− 𝜆∥𝑀 ∥0

 ,
(5)

under the acyclicity constraint: supΛ ŜI∗ (Λ), s.t. Tr 𝑒𝜎 (Λ) − 𝑑 = 0.
Since we only focus on influences on 𝑋1, . . . , 𝑋𝑑 from other

variables, we set Λ[:, 𝑑 + 1 : (𝑝 + 1)𝑑], i.e. the meaningless part
𝑀G [:, 𝑑 + 1 : (𝑝 + 1)𝑑], to zero before training.

3.3 Extracting weight matrix
Eventually, we obtain the estimated full weight matrix 𝐹 = 𝜎 (Λ)
of graph G. Then, we can extract the intra-slice matrix 𝑊̂ = 𝐹 [1 :
𝑑, 1 : 𝑑] and inter-slice matrix 𝐴𝑘 = 𝐹 [𝑘𝑑 + 1 : (𝑘 + 1)𝑑, 1 : 𝑑] for
each time lag 𝑘 = 1, . . . , 𝑝 . They reflect causal relations of these 𝑑
variables in both a contemporaneous and time-lagged manner.

4 EXPERIMENTS
4.1 Baselines
To evaluate the effectiveness of our method, we compare with the
following models:

• DYNOTEARS [12]: As DYNOTEARS is a method focused on
fitting the exact values of time series, it outputs quantitative
weight values. We set the threshold value of each𝑊 and 𝐴
to be 0.5.

• PCMCI [16]: We used the results of PCMCI with a signifi-
cance level of 0.01.

• NeuralGC [17]: Since NeuralGC only learns contempora-
neous relationships, we used𝑊full, representing the overall
relations between variables, to compare our method with it.
𝑊full is defined as:

𝑊full (𝑖, 𝑗) =
{
1, 𝑊 (𝑖, 𝑗) +∑𝑝

𝑘=1𝐴𝑘 (𝑖, 𝑗) > 0
0, otherwise

.

Since the baseline models are unable to utilize interventional
data, we have ensured a fair comparison to some extent by keeping
the overall sample size consistent across all models, while using
only observational data (or normal data in real datasets) for the
baseline models, and both observational and interventional data (or
abnormal data in real datasets) for the proposed method. Therefore,
we validate that by making use of extra information from interven-
tional data, our proposed method outperforms other models that
only apply observational data.

4.2 On simulation datasets
4.2.1 Datasets. We generate temporal data in two steps:

• Sample intra DAG and inter DAG following the Erdős-Rényi
scheme, then sample parameters in weighted adjacency ma-
trix, where elements in intra-slice matrix𝑊 are uniformly
from [−1.0,−0.25]∪[0.25, 1.0] and elements in inter-slicema-
trixes𝐴𝑘 are uniformly from [−1.0𝛼,−0.25𝛼]∪[0.25𝛼, 1.0𝛼], 𝛼 =

1/𝜂𝑘 , 𝜂 ≥ 1, 𝑘 = 1, . . . , 𝑝 .
• Generate time series consistent with the sampled weighted
graph following the standard structural vector autoregres-
sive (SVAR) model[15]: 𝑌0 = 𝑌0𝑊 + 𝑌1𝐴1 + · · · + 𝑌𝑝𝐴𝑝 + 𝑍 ,
where 𝑍 is random variables under the normal distribu-
tion. Then, sample interventional targets from nodes in
𝑌0, and generate imperfect interventional data by adding
a random vector ofU([−0.5,−0.25] ∪ [0.25, 0.5]) to𝑊𝑖 𝑗 and
𝐴𝑘𝑖 𝑗 , where 𝑥 𝑗 is the variable in interventional targets and
𝑥𝑖 ∈ 𝑥

𝜋
G
𝑗

. Besides, if𝑊𝑖 𝑗 , 𝐴𝑘𝑖 𝑗 > 0, add the change to it; if

𝑊𝑖 𝑗 , 𝐴𝑘𝑖 𝑗 < 0, minus the change to it.
Before training, all data are normalized by subtracting the mean

and dividing by the standard deviation. We experimented on two
simulated datasets: Dataset 1 contains 5 nodes, their 1 time-lagged
variables and 5 different interventional targets, each of which covers
a single different node. Dataset 2 contains 10 nodes, their 1 time-
lagged variables and 10 different interventional targets, each of
which covers a single different node.

4.2.2 Evaluation metrics. We leverage the following two main met-
rics to evaluate the performance of the proposed method on learn-
ing causal graph: i) the structural Hamming distance (SHD), which
calculates the number of different edges (either reversed, missing
or redundant) between two DAGs; ii) the structural interventional
distance (SID), which represents the difference between two DAGs
according to their causal inference conditions [14].

4.2.3 Results. The results on simulation data are reported in Ta-
ble 1. We can find that on both datasets, our method achieves signif-
icantly better results than baseline models on all four metrics: SHD,
SID of the overall structure, and SHD of𝑊 (intra-slice structure)
and 𝐴 (inter-slice structure). Figure 1 shows results on dataset 1.

Figure 1: A show case of the result on simulation data.

4.3 On real datasets
4.3.1 Datasets. Scence description. In modern data centers, sta-
ble IT equipment operation is crucial. Advanced air conditioning
systems are used to regulate the heat generated by the equipment
and maintain a stable indoor temperature. In a typical data center
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Table 1: Results on Simulation Data

Dataset 1: 5 nodes, 1 lag Dataset 2: 10 nodes, 1 lag

Method SHD ↓ SHD𝑊 ↓ SHD𝐴 ↓ SID ↓ SHD ↓ SHD𝑊 ↓ SHD𝐴 ↓ SID ↓
DYNOTEARS 20.40 ± 2.41 7.20 ± 1.55 13.20 ± 2.39 38.60 ± 3.72 36.00 ± 5.21 11.80 ± 3.36 24.20 ± 4.92 118.60 ± 20.66
PCMCI 18.10 ± 4.43 10.40 ± 2.17 7.40 ± 2.55 24.10 ± 3.11 62.00 ± 17.15 38.10 ± 11.16 23.90 ± 9.53 118.30 ± 24.08
Proposed 8.80 ± 3.65 3.20 ± 1.81 5.50 ± 2.01 12.00±8.21 27.80 ± 8.32 9.90 ± 3.67 17.70 ± 6.07 46.70 ± 23.12

NeuralGC 14.90 ± 2.28 - - 20.00 ± 0.00 31.30 ± 4.72 - - 85.50 ± 6.36
Proposed 4.80 ± 1.81 - - 19.90 ± 0.32 21.50 ± 5.62 - - 84.10 ± 6.51

Figure 2: A typical data center cooling system diagram.

room, shown as figure 2, equipment rows (A, B, C, D, etc.) are ar-
ranged systematically in the room, with physical barriers isolating
adjacent rows of cabinets to prevent hot and cold air from mixing.
Computer room air conditioners (CRACs) supply cooling on both
sides of the room, creating a closed loop structure that maintains
a stable environment. Multiple sensors located in the cold aisle
provide real-time temperature monitoring to ensure a continuous
supply of cold air. This approach enables timely adjustments to
maintain stable IT equipment operation.

Data acquisition. The data used in this study was obtained from
a specific data center at Alibaba. It covers monitoring data from a
cooling system of a particular room from January 1st, 2023 to May
1st, 2023, and includes 38 variables in total. These variables comprise
18 cold aisle temperatures from sensors and 20 air conditioning supply
temperatures from CRACs. We collected several time series of these
38 variables during normal as well as abnormal states. For the
latter, data was sampled within 20 minutes of the occurrence of the
abnormality, with each sampling interval to be 10 seconds. Anomaly
points were identified by learning the normal distribution range
from historical data, using the 𝑛-𝜎 method. Any data points that
fall outside of the 𝑛-𝜎 range (e.g., 3 to 5) of it selves are extracted
as anomaly time points.

4.3.2 Evaluation metrics. Given the absence of ground truth DAGs
in the real dataset, we employ two types of performance metrics
based on prior knowledge to assess the algorithms’ efficacy in
learning causal graphs. These metrics mainly consider the physical
location relationships within the room. Firstly, we reckon the edges
from cold aisle temperatures (downstream) to air conditioning sup-
ply temperatures (upstream) is necessarily incorrect, and should be

considered as a false negative. Therefore, we calculate i) C2A False,
whether the model has learned those edges. Moreover, the closer
the sensor is to a certain air conditioner, the greater the influence
on this sensor. We assume that the edges from the air conditioning
supply temperatures to the temperatures of the two adjacent cold
aisles exist (shown in figure 2), and calculate ii) A2C False, the
number of true edges the algorithm has not learned; and iii) A2C
True, the number of true edges the algorithm has learned.

Table 2: Results on Real Data

C2A False ↓ A2C False↓ A2C True↑
DYNOTEARS 0.00 ± 0.00 240.00 ± 0.00 0.00 ± 0.00
PCMCI 32.90 ± 5.00 226.80 ± 2.86 13.20 ± 2.86
Proposed 4.00 ± 6.85 234.20 ± 3.16 5.80 ± 3.16

NeuralGC 25.70 ± 19.47 118.10 ± 4.01 1.90 ± 4.01
Proposed 3.90 ± 6.61 114.70 ± 2.50 5.30 ± 2.50

4.3.3 Results. The results on real data are presented in Table 2. It
can be observed that our method outperforms other approaches
comprehensively, not only achieving fewer C2A False and A2C
False but also learning a higher number of A2C True relations.

5 CONCLUSION
In conclusion, this paper addresses the limitations of temporal
causal learning from observational data. The novel contributions
include the introduction of a temporal interventional dataset with
causal labels and the proposed TECDI approach. The experimental
results demonstrate that incorporating interventional data effec-
tively improves the accuracy of temporal causal discovery. In the
future, we plan to apply the learned causal graph to practical tasks,
such as root cause localization.
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